A rectangle has a length 10 m less than twice its width. When 2 m are added to the​ width, the resulting figure is a square with an area of 196 m squared. Find the dimensions of the original rectangle.

Respuesta :

Answer:

The length of the original rectangle is 14 meters and the width of the original rectangle is 12 meters

Step-by-step explanation:

Let

l ----> the length of the original rectangle

w ----> the width of the original rectangle

we know that

[tex]l=2w-10[/tex] ----> equation A

[tex]196=(w+2)^{2}[/tex] ----> area of a square

Solve for w

square root both sides

[tex](w+2)=(+/-)14[/tex]

[tex]w=14=(+/-)14-2[/tex]

[tex]w=14=14-2=12\ m[/tex]

[tex]w=14=-14-2=16\ m[/tex] -----> this solution not make sense

so

[tex]w=12\ m[/tex]

Find the value of L

[tex]l=2(12)-10=14\ m[/tex]

therefore

The length of the original rectangle is 14 meters and the width is 12 meters