Answer:
At light intensity I = 3, is P a maximum
Explanation:
Given:
[tex]P=\frac{90I}{I^2+I+9}[/tex]
now differentiating the above equation with respect to Intensity 'I' we get
[tex]\frac{dp}{dI}=\frac{(I^2+I+9).\frac{d(90I)}{dI}-90I.\frac{d((I^2+I+9)}{dI}}{(I^2+I+9)^2}[/tex]
or
[tex]\frac{dp}{dI}=\frac{(I^2+I+9).90-90I.(2I+1)}{(I^2+I+9)^2}[/tex]
or
[tex]\frac{dp}{dI}=\frac{90I^2+90I+810)-(180I^2+90I)}{(I^2+I+9)^2}[/tex]
or
[tex]\frac{dp}{dI}=\frac{-90I^2+810)}{(I^2+I+9)^2}[/tex]
Now for the maxima [tex]\frac{dP}{dI}=0[/tex]
thus,
[tex]0=\frac{-90I^2+810)}{(I^2+I+9)^2}[/tex]
or
[tex]-90I^2+810=0[/tex]
or
[tex]I^2=\frac{810}{90}[/tex]
or
[tex]I^2=9[/tex]
or
I = 3
thus, for the value of intensity I = 3, the P is maximum
at I = 3
[tex]P=\frac{90\times3}{3^2+3+9}[/tex]
or
[tex]P=\frac{270}{21}[/tex]
or
[tex]P=12.85[/tex]