Respuesta :

Answer:

[tex]t=280\ minutes[/tex]

Step-by-step explanation:

Let's call "v" the speed of the commercial airplane and call "t" at the travel time of the commercial plane

The distance in kilometers of the trip is: 1730 km

Then we know that:

[tex]vt=1730[/tex]

Then for the jet we have that the speed is:

[tex]2v[/tex]

The flight time for the jet is:

[tex]t-140[/tex]

Therefore:

[tex](2v)(t-140) = 1730[/tex]

Substituting the first equation in the second we have to:

[tex](2*\frac{1730}{t})(t-140) = 1730[/tex]

[tex](\frac{3460}{t})(t-140) = 1730[/tex]

[tex]3460-\frac{484400}{t} = 1730[/tex]

Now solve for t

[tex]\frac{484400}{t} = 3460 - 1730[/tex]

[tex]\frac{484400}{t} =1730[/tex]

[tex]\frac{t}{484400} =\frac{1}{1730}[/tex]

[tex]t=\frac{484400}{1730}[/tex]

[tex]t=280\ minutes[/tex]