Respuesta :

Answer:

The shortest distance from A to C is [tex]AC=5\sqrt{13}\ units[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

The shortest distance from A to C is the hypotenuse of the right triangle AYC

Applying the Pythagoras Theorem

[tex]AC^{2}=AY^{2} +YC^{2}[/tex]

step 1

Find the length YC (hypotenuse of the right triangle YBC)

Applying the Pythagoras Theorem

[tex]YC^{2}=YB^{2} +BC^{2}[/tex]

substitute the given values

[tex]YC^{2}=6^{2} +15^{2}[/tex]

[tex]YC^{2}=261[/tex]

[tex]YC=\sqrt{261}\ units[/tex]

step 2

Find the shortest distance from A to C

[tex]AC^{2}=AY^{2} +YC^{2}[/tex]

substitute the given values

[tex]AC^{2}=8^{2} +\sqrt{261}^{2}[/tex]

[tex]AC^{2}=325[/tex]

[tex]AC=\sqrt{325}\ units[/tex]

[tex]AC=5\sqrt{13}\ units[/tex]

Ver imagen calculista