Respuesta :
Answer:
For A: The expression for [tex]K_{eq}[/tex] is given below.
For B: The value of [tex]K_{eq}[/tex] at 25°C is 0.0185512
For C: The value of [tex]K_{eq}[/tex] at 65°C is 0.2887886
For D: The reaction is endothermic in nature.
Explanation:
- For A:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as [tex]K_{eq}[/tex]
For the given chemical reaction:
[tex][Co(H_2O)_6]^{2+}(aq.)+4Cl^-(aq.)\rightleftharpoons [CoCl_4]^{2-}(aq.)+6H_2O(l)[/tex]
The expression of [tex]K_{eq}[/tex] for above equation without the concentration of liquid water is:
[tex]K_{eq}=\frac{[CoCl_4]^{2-}}{[Co(H_2O)_6]^{2+}[Cl^-]^4}[/tex] ......(1)
The expression is written above.
- For B:
We are given:
[tex][CoCl_4]^{2-}=0.0334612M[/tex]
[tex][Co(H_2O)_6]^{2+}=0.966539M[/tex]
[tex][Cl^-]=1.86616M[/tex]
Putting values in equation 1, we get:
[tex]K_{eq}=\frac{0.0334612}{0.966539\times 1.86616}=0.0185512[/tex]
Hence, the value of [tex]K_{eq}[/tex] at 25°C is 0.0185512
- For C:
We are given:
[tex][CoCl_4]^{2-}=0.234625M[/tex]
[tex][Co(H_2O)_6]^{2+}=0.765375M[/tex]
[tex][Cl^-]=1.06150M[/tex]
Putting values in equation 1, we get:
[tex]K_{eq}=\frac{0.234625}{0.765375\times 1.06150}=0.2887886[/tex]
Hence, the value of [tex]K_{eq}[/tex] at 65°C is 0.2887886
- For D:
For Endothermic reactions, [tex]\Delta H>0[/tex], which is positive
For Exothermic reactions, [tex]\Delta H<0[/tex], which is negative
To calculate [tex]\Delta H[/tex] of the reaction, we use Van't Hoff's equation, which is:
[tex]\ln(\frac{K_{65^oC}}{K_{25^oC}})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_{65^oC}[/tex] = equilibrium constant at 65°C = 0.2887886
[tex]K_{25^oC}[/tex] = equilibrium constant at 25°C = 0.0185512
[tex]\Delta H[/tex] = Enthalpy change of the reaction = ?
R = Gas constant = 8.314 J/mol K
[tex]T_1[/tex] = initial temperature = [tex]25^oC=[25+2730]K=298K[/tex]
[tex]T_2[/tex] = final temperature = [tex]65^oC=[65+2730]K=338K[/tex]
Putting values in above equation, we get:
[tex]\ln(\frac{0.2887886}{0.0185512})=\frac{\Delta H}{8.314J/mol.K}[\frac{1}{298}-\frac{1}{338}]\\\\\Delta H=57471.26J/mol[/tex]
As, the calculated value of [tex]\Delta H>0[/tex]. Thus, the reaction is endothermic in nature.