[Co(H2O)6]2+(aq) + 4Cl-(aq) ⇌ [CoCl4]2-(aq) + 6H2O(l)

Concentrations at 25 degrees C

H+ 9.84368e-8

OH- 9.84368e-8

Co (H2O)6^2 0.966539

Cl- 1.86616

CoCl4^2- 0.0334612

Concentrations at 65 degree C

H+ 3.73844e-7

OH- 3.73844e-7

Co (H2O)6^2 0.765375

Cl- 1.06150

CoCl4^2- 0.234625

A. Write a K expression for this reaction (note that that liquid water shouldn’t be included in the K expression).

B. Use the K expression and equilibrium concentrations on the left to determine the K value at 25 deg C. Please show all work for full credits.

C. What is the equilibrium constant K’ 65 Degrees C?

D. Compare the K’ constants; are the value difference agree or against with endo or exothermic determination?

Respuesta :

Answer:

For A: The expression for [tex]K_{eq}[/tex] is given below.

For B: The value of [tex]K_{eq}[/tex] at 25°C is 0.0185512

For C: The value of [tex]K_{eq}[/tex] at 65°C is 0.2887886

For D: The reaction is endothermic in nature.

Explanation:

  • For A:

Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as [tex]K_{eq}[/tex]

For the given chemical reaction:

[tex][Co(H_2O)_6]^{2+}(aq.)+4Cl^-(aq.)\rightleftharpoons [CoCl_4]^{2-}(aq.)+6H_2O(l)[/tex]

The expression of [tex]K_{eq}[/tex] for above equation without the concentration of liquid water is:

[tex]K_{eq}=\frac{[CoCl_4]^{2-}}{[Co(H_2O)_6]^{2+}[Cl^-]^4}[/tex]      ......(1)

The expression is written above.

  • For B:

We are given:

[tex][CoCl_4]^{2-}=0.0334612M[/tex]

[tex][Co(H_2O)_6]^{2+}=0.966539M[/tex]

[tex][Cl^-]=1.86616M[/tex]

Putting values in equation 1, we get:

[tex]K_{eq}=\frac{0.0334612}{0.966539\times 1.86616}=0.0185512[/tex]

Hence, the value of [tex]K_{eq}[/tex] at 25°C is 0.0185512

  • For C:

We are given:

[tex][CoCl_4]^{2-}=0.234625M[/tex]

[tex][Co(H_2O)_6]^{2+}=0.765375M[/tex]

[tex][Cl^-]=1.06150M[/tex]

Putting values in equation 1, we get:

[tex]K_{eq}=\frac{0.234625}{0.765375\times 1.06150}=0.2887886[/tex]

Hence, the value of [tex]K_{eq}[/tex] at 65°C is 0.2887886

  • For D:

For Endothermic reactions, [tex]\Delta H>0[/tex], which is positive

For Exothermic reactions, [tex]\Delta H<0[/tex], which is negative

To calculate [tex]\Delta H[/tex] of the reaction, we use Van't Hoff's equation, which is:

[tex]\ln(\frac{K_{65^oC}}{K_{25^oC}})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_{65^oC}[/tex] = equilibrium constant at 65°C = 0.2887886

[tex]K_{25^oC}[/tex] = equilibrium constant at 25°C = 0.0185512

[tex]\Delta H[/tex] = Enthalpy change of the reaction = ?

R = Gas constant = 8.314 J/mol K

[tex]T_1[/tex] = initial temperature = [tex]25^oC=[25+2730]K=298K[/tex]

[tex]T_2[/tex] = final temperature = [tex]65^oC=[65+2730]K=338K[/tex]

Putting values in above equation, we get:

[tex]\ln(\frac{0.2887886}{0.0185512})=\frac{\Delta H}{8.314J/mol.K}[\frac{1}{298}-\frac{1}{338}]\\\\\Delta H=57471.26J/mol[/tex]

As, the calculated value of [tex]\Delta H>0[/tex]. Thus, the reaction is endothermic in nature.