The equation of circle having a diameter with endpoints (-2, 1) and (6, 7) is

(x - 4)² + (y - 3)² = 25
(x - 2)² + (y - 4)² = 25
(x - 2)² + (y - 4)² = 100

Respuesta :

Answer:

[tex](x-2)^{2}+(y-4)^{2}=25[/tex]

Step-by-step explanation:

step 1

Find the diameter of the circle

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-2,1)\\B(6,7)[/tex]  

substitute the values

[tex]d=\sqrt{(7-1)^{2}+(6+2)^{2}}[/tex]

[tex]d=\sqrt{(6)^{2}+(8)^{2}}[/tex]

[tex]d=\sqrt{100}[/tex]

[tex]d=10\ units[/tex]

The radius is half the diameter

so

[tex]r=10/2=5\ units[/tex]

step 2

Find the center of the circle

the center of the circle is the midpoint between the endpoints of the diameter

so

The center is

[tex](\frac{-2+6}{2},\frac{1+7}{2})[/tex]

[tex](2,4)[/tex]

step 3

Find the equation of the circle

The equation of the circle is

[tex](x-h)^{2}+(y-k)^{2}=r^{2}[/tex]

substitute the values

[tex](x-2)^{2}+(y-4)^{2}=5^{2}[/tex]

[tex](x-2)^{2}+(y-4)^{2}=25[/tex]