Respuesta :
Answer:
a+b=1
Step-by-step explanation:
we know that
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2} -x-90=0[/tex]
so
[tex]a=1\\b=-1\\c=-90[/tex]
substitute in the formula
[tex]x=\frac{1(+/-)\sqrt{-1^{2}-4(1)(-90)}} {2(1)}[/tex]
[tex]x=\frac{1(+/-)\sqrt{361}} {2}[/tex]
[tex]x=\frac{1(+/-)19} {2}[/tex]
[tex]x=\frac{1(+)19} {2}=10[/tex]
[tex]x=\frac{1(-)19} {2}=-9[/tex]
so
a=10, b=-9
a+b=10-9=1
Good evening ,
______
Answer:
a+b=1
___________________
Step-by-step explanation:
For such equation which has the form : mx² + nx + p = 0
There is a rule in this course that tells as: a + b = -(n)/m
We have m=1 and n= (-1) then a+b= -(-1)/1 = 1/1 = 1.
:)