Respuesta :

Answer:

See explanation

Step-by-step explanation:

We want to show that [tex](2\cdot 3\cdot 7)^4=2^4\cdot3^4 \cdot7^4[/tex].

We take the LHS and rewrite to obtain the RHS.

Recall that: [tex]a^m=a\times a\times a....m\:\:times[/tex].

This implies that:

[tex](2\cdot 3\cdot 7)^4=(2\cdot 3\cdot 7)(2\cdot 3\cdot 7)(2\cdot 3\cdot 7) (2\cdot 3\cdot 7)[/tex]

We regroup to get:

[tex](2\cdot 3\cdot 7)^4=2\times 2\times 2\times 2\times 3\times 3\times 3\times 3\times 7\times 7\times 7\times 7[/tex]

Apply this rule: [tex]a\times a\times a....m\:\:times=a^m[/tex].

This gives us:

[tex](2\cdot 3\cdot 7)^4=2^4\cdot3^4 \cdot7^4[/tex]...as required.