Point = K, T, J, S
Line [tex]=\overleftrightarrow{JT},\overleftrightarrow{KS},\overleftrightarrow{JK}[/tex]
Line Segment:
[tex]=\overline{WT},\overline{TR},\overline{JT}[/tex]
Plane
Plane F, Plane Q,
Ray
[tex]=\overrightarrow{TK},\overrightarrow{JS},\overrightarrow{TS}[/tex]
Angle
∠KTR, ∠TJH,∠KTW
Parallel line
1.→WT║YJ
2.→TR ║ JH
3.→WR ║ YH
Perpendicular lines
→KT ⊥ WR
→TJ ⊥ YH
→ST ⊥ WR
Segment Addition Postulate
Given two points, A and B, if a third point C lies in between them,then following postulate is satisfied by three points A,B and C,
AB+BC=AC
→ WT +TR=WR
→YJ+JH=YH
→SJ+JT=ST