Respuesta :

Looks like

[tex]B=\begin{bmatrix}11&0&0&13&4\\12&5&0&17&19\\0&0&0&1&0\\21&23&3&29&37\\2&0&0&35&0\end{bmatrix}[/tex]

Recall that for any two matrices [tex]A,B[/tex],

[tex]\det(AB)=\det A\det B[/tex]

which means

[tex]\det(B^{100})=(\det B)^{100}[/tex]

Laplace expansion along the third row gives us

[tex]\det B=-\det\begin{bmatrix}11&0&0&4\\12&5&0&19\\21&23&3&37\\2&0&0&0\end{bmatrix}[/tex]

Expansion along the last row gives

[tex]\det B=-\left(-2\det\begin{bmatrix}0&0&4\\5&0&19\\23&3&37\end{bmatrix}\right)=2\det\begin{bmatrix}0&0&4\\5&0&19\\23&3&37\end{bmatrix}[/tex]

Expansion along the first row gives

[tex]\det B=2\left(4\det\begin{bmatrix}5&0\\23&3\end{bmatrix}\right)=8\det\begin{bmatrix}5&0\\23&3\end{bmatrix}[/tex]

and finally

[tex]\det\begin{bmatrix}5&0\\23&3\end{bmatrix}=15[/tex]

so that

[tex]\det B=8\cdot15=120[/tex]

Then

[tex]\boxed{\det(B^{100})=120^{100}}[/tex]