Respuesta :

Answer:

[tex]m_{1} =5\\\\m_{2} =-2[/tex]

Step-by-step explanation:

using quadratic formula:

[tex]m = \frac{-b+-\sqrt{b^{2}-4*a*c}}{2*a}[/tex]

in this case:

a = 1   b= -3   c= -10

we have:

[tex]m =\frac{-(-3)+-\sqrt{(-3)^{2}-4*1*-10}}{2*1}\\\\m =\frac{3+-\sqrt{9+40}}{2}\\\\m = \frac{3+-\sqrt{9+40}}{2}\\ \\m =\frac{3+-\sqrt{49}}{2}\\\\m_{1} = \frac{3+7}{2} =5\\\\m_{2} = \frac{3-7}{2} = -2[/tex]

Answer:

m = - 2, m = 5

Step-by-step explanation:

Given

m² - 3m - 10 = 0

Consider the factors of the constant term (- 10) which sum to give the coefficient of the m- term (- 3)

The factors are - 5 and + 2, since

- 5 × 2 = - 10 and - 5 + 2 = - 3, hence

(m - 5)(m + 2) = 0

Equate each factor to zero and solve for m

m + 2 = 0 ⇒ m = - 2

m - 5 = 0 ⇒ m = 5