Answer:
option (D)
Explanation:
The root mean square speed of the gas molecules is defined as the square root of the mean of the squares of the random velocities of the individual molecules of the gas.
If C1, C2, ... Cn be the random velocities of the molecules of a gas, then the root mean square velocity of the molecules is given by
[tex]C_{rms}=\sqrt{\frac{C_{1}^{2}+C_{2}^{2}...+C_{n}^{2}}{n}}[/tex]
Or we write it as
[tex]C_{rms}=\sqrt{\frac{3kT}{m}}[/tex]
Where, k be the Boltzmann's constant, T be the absolute temperature of the gas and m be the mass of each molecule of the gas