Answer:
Step-by-step explanation:
I find it easier to work with the given standard-form equation. The parallel line will have the same x- and y-coefficients and a new constant. That constant can be found by substituting the given x- and y-values into the left-side expression:
x + 2y = 8 + 2·3 = 14
The parallel line is x + 2y = 14.
__
The perpendicular line will have the x- and y-coefficients swapped and one of them negated. (In standard form, the x-coefficient is positive, so in this case it is convenient to negate the y-coefficient.) Then the perpendicular line through (8, 3) is ...
2x -y = 2·8 -3 = 13
The perpendicular line is 2x - y = 13.