Solve the inequality (question 30 please, already solved others)

[tex]\bf \cfrac{1}{4}n+12 \geqslant \cfrac{3}{4}n-4\implies \cfrac{1}{4}n+16 \geqslant \cfrac{3}{4}n\implies 16\geqslant \cfrac{3n}{4}-\cfrac{1n}{4}\implies 16\geqslant \cfrac{3n-1n}{4} \\\\\\ 16\geqslant\cfrac{2n}{4}\implies 16\geqslant \cfrac{n}{2}\implies 32 \geqslant n[/tex]
Answer:
n ≤ 32
Step-by-step explanation:
Given
[tex]\frac{1}{4}[/tex] n + 12 ≥ [tex]\frac{3}{4}[/tex] n - 4
Subtract [tex]\frac{1}{4}[/tex] n from both sides
12 ≥ [tex]\frac{1}{2}[/tex] n - 4 ( add 4 to both sides )
16 ≥ [tex]\frac{1}{2}[/tex] n ( multiply both sides by 2 )
32 ≥ n, hence
n ≤ 32