Answer:
0.556 Watts
Explanation:
w = Weight of object = 762 N
s = Distance = 5 m
t = Time taken = 29 seconds
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow a=\frac{2\times (s-ut)}{t^2}\\\Rightarrow a=\frac{2\times (5-0)}{29^2}=\frac{10}{481}[/tex]
Mass of the body
[tex]m=\frac{w}{g}=\frac{762}{9.81}[/tex]
Force required to move the body
[tex]F=ma\\\Righarrow F=\frac{762}{9.81}\times \frac{10}{481}[/tex]
Velocity of object
[tex]v=u+at\\\Rightarrow v=0+\frac{10}{481}\times 29\\\Rightarrow v=\frac{10}{29}[/tex]
Power
[tex]P=Fv\\\Rightarrow P=\frac{762}{9.81}\times \frac{10}{481}\times \frac{10}{29}=0.556\ W[/tex]
∴ Amount of power required to move the object is 0.556 Watts