How do you solve this once you find the slope

[tex]\bf (\stackrel{x_1}{3}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{-5}~,~\stackrel{y_2}{6}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{0}}}{\underset{run} {\underset{x_2}{-5}-\underset{x_1}{3}}}\implies \cfrac{6}{-8}\implies -\cfrac{3}{4}[/tex]
[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{0}=\stackrel{m}{-\cfrac{3}{4}}(x-\stackrel{x_1}{3})\implies y=-\cfrac{3}{4}x+\cfrac{9}{4}[/tex]