Answer:
maximum amount = 7,170.28
Explanation:
We will calculate using the present value of a lump sum
[tex]\frac{Principal}{(1 + rate)^{time} } = PV[/tex]
For year 1
Principal 3,000.00
time 1.00
rate 0.11
[tex]\frac{3000}{(1 + 0.11)^{1} } = PV[/tex]
PV 2,702.70
For year 2
Maturity 1,000.00
time 2.00
rate 0.11
[tex]\frac{1000}{(1 + 0.11)^{2} } = PV[/tex]
PV 811.62
For year 3
Maturity 5,000.00
time 3.00
rate 0.11
[tex]\frac{5000}{(1 + 0.11)^{3} } = PV[/tex]
PV 3,655.96
We add them to get the present value ofthe cash flow
3,655.96 + 811.62 + 2,702.70 = 7,170.28
This will be the maximun amount we can pay for the investment at our current rate. more than this sum will generate a negative net present value