The fracture stress of a large sheet of steel with a central crack of 40 mm is 480 MPa. Then, the fracture stress of similar sheet with crack of 100 mm is

Respuesta :

Answer:

σ = 303.57 MPa

Explanation:

Given data:

Crack length for case 1 = 40 mm = 0.04 m

Fracture stress for the case 1 = 480 MPa = 480 × 10⁶ Pa

Crack length for the case 2 = 100 mm = 0.1 m

Now,

using the Griffith equation, we have[tex]\sigma=[\frac{G_cE}{\pi\ a}]^{\frac{1}{2}}[/tex]

where,

Gc is the critical strain energy releasr

and E is the modulus of elasticity

For case 1, we have

[tex]480\times10^6=[\frac{G_cE}{\pi\ 0.04}]^{\frac{1}{2}}[/tex]  .........(1)

and

for case 2

[tex]\sigma=[\frac{G_cE}{\pi\ 0.1}]^{\frac{1}{2}}[/tex]  .......(2)

on dividing (2) by (1), we get

[tex]\frac{\sigma}{480\times10^6}=[\frac{0.04}{0.1}]^{\frac{1}{2}}[/tex]

or

σ = 303.57 × 10⁶ Pa

or

σ = 303.57 MPa

Otras preguntas