Answer:
50.67
Explanation:
L = 4 m
[tex]\rho (x)=10+2\sqrt{x}[/tex]
Let the mass of small length dx is dm.
So, dm = ρ(x) dx
Integrate on both the sides within proper limits
[tex]\int dm = \int \rho (x)dx=\int_{0}^{4}\left (10+2\sqrt{x} \right )dx[/tex]
[tex]m = \left [ 10x+\frac{4}{3}x^{\frac{3}{2}} \right ]_{0}^{4}[/tex]
m = 40 + 32 / 3 = 152 / 3 = 50.67