Answer:
[tex]Area=6\:units^2[/tex]
Step-by-step explanation:
Given the vertices [tex](x_1,y_1)=J(2,2)[/tex], [tex](x_2,y_2)=K(3,5)[/tex] and
[tex](x_3,y_3)=L(6,2)[/tex]. The area of triangle JKL is given by:
[tex]Area=\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|[/tex]
We substitute the values to get:
[tex]Area=\frac{1}{2}|2(5-2)+3(2-2)+6(2-5)|[/tex]
This simplifies to
[tex]Area=\frac{1}{2}|2(3)+3(0)+6(-3)|[/tex]
[tex]Area=\frac{1}{2}|6+0-18|[/tex]
[tex]Area=\frac{1}{2}|-12|[/tex]
[tex]Area=\frac{1}{2}*12[/tex]
[tex]Area=6\:units^2[/tex]