Respuesta :

Answer:

Option b

Step-by-step explanation:

Given : Series 6,2,4,7,3,2.

To find : What is the variance of the series?

Solution :

The variance formula is given by,

[tex]\sigma^2=\frac{\sum(x_i-\bar{x})^2}{n}[/tex]

Step 1 - The mean of the series,

[tex]\bar{x}=\frac{6+2+4+7+3+2}{6}[/tex]

[tex]\bar{x}=\frac{24}{6}[/tex]

[tex]\bar{x}=4[/tex]

Step 2 - Find [tex]\sum(x_i-\bar{x})^2[/tex]

[tex]\sum(x_i-\bar{x})^2=(6-4)^2+(2-4)^2+(4-4)^2+(7-4)^2+(3-4)^2+(2-4)^2[/tex]

[tex]\sum(x_i-\bar{x})^2=(2)^2+(-2)^2+(0)^2+(3)^2+(-1)^2+(-2)^2[/tex]

[tex]\sum(x_i-\bar{x})^2=4+4+0+9+1+4[/tex]

[tex]\sum(x_i-\bar{x})^2=22[/tex]

Step 3 - Substitute back in formula,

[tex]\sigma^2=\frac{22}{6}[/tex]

[tex]\sigma^2=3.6[/tex]

Therefore, The variance of the series is 3.6.

So, Approximately option b is correct.