The diffusion of oxygen (O2) through living tissue is often first approximated as the diffusion of
dissolved O2 in liquid water. Estimate the diffusion of O2 in water by the Wilke-Chang correlation
at 37℃.

Respuesta :

Explanation:

We assume that [tex]O_{2}[/tex] is represented by A and [tex]H_{2}O[/tex] is represented by B respectively.

According to Wilke Chang equation as follows.

       [tex]D_{AB} = \frac{7.4 \times 10^{-8} \times (\phi_{B} M_{B})^{1/2} \times T}{V^{0.6}_{A} \times \mu_{B}}[/tex]

       [tex]D_{O_{2} - H_{2}O} = \frac{7.4 \times 10^{-8} \times (\phi_{H_{2}O} M_{H_{2}O})^{1/2} \times T}{V^{0.6}_{O_{2}} \times \mu_{H_{2}O}}[/tex]

where,   T = absolute temperature = (273 + 37)K = 310 K

       [tex]\phi_{H_{2}O}[/tex] = an association parameter for solvent water = 2.26

    [tex]M_{H_{2}O}[/tex] = Molecular weight of water = 18 g/mol

    [tex]\mu[/tex] = viscosity of water (in centipoise) = 0.62 centipoise

    [tex]V_{O_{2}}[/tex] = the molar volume of oxygen = 25.6 [tex]cm^{3}/g mol[/tex]

Hence, putting the given values into the above formula as follows.

   [tex]D_{O_{2} - H_{2}O} = \frac{7.4 \times 10^{-8} \times (\phi_{H_{2}O} M_{H_{2}O})^{1/2} \times T}{V^{0.6}_{O_{2}} \times \mu_{H_{2}O}}[/tex]

                       = [tex]\frac{7.4 \times 10^{-8} \times (2.26 \times 18)^{1/2} \times 310 K}{(25.6)^{0.6}_{O_{2}} \times 0.692}[/tex]

                       = [tex]3021.7 \times 10^{-8} cm^{2}/s[/tex]

Thus, we can conclude that the diffusion of [tex]O_{2}[/tex] in water by the Wilke-Chang correlation  at [tex]37^{o}C[/tex].