1. Let R be the equilateral in the xy plane with vertices (1,0), (4,0), (0,1) and (0,4) evaluate the double integral 1/(x+y) DA with the substation x=u-uv y=uv

Respuesta :

Answer:

Step-by-step explanation:

Given that R is a treapezium with given vertices in the xy plane with side 3 units.

Substitution is

[tex]x=u-uv\\y=uv[/tex]

[tex]J =\left[\begin{array}{ccc}x_u&x_v\\y_u&y_v\\\end{array}\right] \\=1-v      v\\   -u      u\\=u-uv+uv =u\\[/tex]

Hence dx dy = ududv

Integrand = [tex]\frac{1}{x+y} =\frac{1}{u}[/tex]

Limits now we have to change

We see from the vertices the line x+y changes from 1 to 4, i.e. 1<u<4 and

we get [tex]v=\frac{y}{u} =\frac{y}{x+y}[/tex] so v varies from 0 to 1

The given integral

=[tex]\int\limits^4_1\int\limits^1_0  {\frac{1}{u} } \u du\\ =(4)(1)\\=4[/tex]