What is the energy released in this β − β − nuclear reaction 40 19 K → 40 20 C a + 0 − 1 e 19 40 K → 20 40 C a + − 1 0 e ? (The atomic mass of 40 K 40 K is 39.963998 u and that of 40 C a 40 C a is 39.962591 u)

Respuesta :

Answer: The energy released in the given nuclear reaction is 1.3106 MeV.

Explanation:

For the given nuclear reaction:

[tex]_{19}^{40}\textrm{K}\rightarrow _{20}^{40}\textrm{Ca}+_{-1}^{0}\textrm{e}[/tex]

We are given:

Mass of [tex]_{19}^{40}\textrm{K}[/tex] = 39.963998 u

Mass of [tex]_{20}^{40}\textrm{Ca}[/tex] = 39.962591 u

To calculate the mass defect, we use the equation:

[tex]\Delta m=\text{Mass of reactants}-\text{Mass of products}[/tex]

Putting values in above equation, we get:

[tex]\Delta m=(39.963998-39.962591)=0.001407u[/tex]

To calculate the energy released, we use the equation:

[tex]E=\Delta mc^2\\E=(0.001407u)\times c^2[/tex]

[tex]E=(0.001407u)\times (931.5MeV)[/tex]    (Conversion factor:  [tex]1u=931.5MeV/c^2[/tex]  )

[tex]E=1.3106MeV[/tex]

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.