Answer:
[tex]d = 3574.3 m[/tex]
Explanation:
Given that acceleration of the airplane is
[tex]a_x = 8.50 m/s^2[/tex]
[tex]a_y = -28 m/s^2[/tex]
initial velocity is given as
[tex]v_x = 83.5 m/s[/tex]
[tex]v_y = -15.5 m/s[/tex]
now we have displacement in x direction given as
[tex]x = v_x t + \frac{1}{2}a_x t^2[/tex]
[tex]x = (83.5)(14) + \frac{1}{2}(8.5)(14)^2[/tex]
[tex]x = 2002 m[/tex]
Displacement along y direction is given as
[tex]y = v_y t + \frac{1}{2}a_y t^2[/tex]
[tex]y = (-15.5)(14) + \frac{1}{2}(-28)(14^2)[/tex]
[tex]y = -2961 m[/tex]
so the magnitude of the displacement is given as
[tex]d = \sqrt{x^2 + y^2}[/tex]
[tex]d = \sqrt{2002^2 + 2961^2}[/tex]
[tex]d = 3574.3 m[/tex]