Respuesta :
Answer:
Radius, r = 0.00523 meters
Explanation:
It is given that,
Magnetic field, [tex]B=2\ mT=2.2\times 10^{-3}\ T[/tex]
Current in the toroid, I = 9.6 A
Number of turns, N = 6
We need to find the radius of the toroid. The magnetic field at the center of the toroid is given by :
[tex]B=\dfrac{\mu_oNI}{2\pi r}[/tex]
[tex]r=\dfrac{\mu_oNI}{2\pi B}[/tex]
[tex]r=\dfrac{4\pi \times 10^{-7}\times 6\times 9.6}{2.2\pi \times 2\times 10^{-3}}[/tex]
r = 0.00523 m
or
[tex]r=5.23\times 10^{-3}\ m[/tex]
So, the radius of the toroid is 0.00523 meters. Hence, this is the required solution.
Answer:
The radius of the toroid is [tex]5.23\times10^{-3}\ m[/tex].
Explanation:
Given that,
Magnetic field B = 2.2 mT
Current =9.6 A
Number of turns = 6.000
We need to calculate the radius
Using formula of magnetic force
[tex]B=\dfrac{\mu_{0}NI}{2\pi r}[/tex]
[tex]r=\dfrac{\mu_{0}NI}{2\pi B}[/tex]
Put the value int the formula
[tex]r=\dfrac{4\pi\times10^{-7}\times9.6\times6.000}{2\pi\times2.2\times10^{-3}}[/tex]
[tex]r=5.23\times10^{-3}\ m[/tex]
Hence, The radius of the toroid is [tex]5.23\times10^{-3}\ m[/tex].