A stone is dropped into a well. The sound of the splash is heard 3.5 seconds later. What is the depth of the well? Take the speed of sound in air to be 343 m/s.

Respuesta :

Answer:

The depth of the well, s = 54.66 m

Given:

time, t = 3.5 s

speed of sound in air, v = 343 m/s

Solution:

By using second equation of motion for the distance traveled by the stone when dropped into a well:

[tex]s = ut +\frac{1}{2}at^{2}[/tex]

Since, the stone is dropped, its initial velocity, u = 0 m/s

and acceleration is due to gravity only, the above eqn can be written as:

[tex]s = \frac{1}{2}gt'^{2}[/tex]

[tex]s = \frac{1}{2}9.8t^{2} = 4.9t'^{2}[/tex]                     (1)

Now, when the sound inside the well travels back, the distance covered,s is given by:

[tex]s = v\times t''[/tex]

[tex]s = 343\times t''[/tex]                                              (2)

Now, total time taken by the sound to travel:

t = t' + t''

t'' = 3.5 - t'                                                                        (3)

Using eqn (2) and (3):

s = 343(3.5 - t')                                                                 (4)

from eqn (1) and (4):

[tex]4.9t'^{2} = 343(3.5 - t')[/tex]

[tex]4.9t'^{2} + 343t' - 1200.5 = 0[/tex]

Solving the above quadratic eqn:

t' = 3.34 s

Now, substituting t' = 3.34 s in eqn (2)

s = 54.66 m