Respuesta :

Answer: [tex](0.5,8.5)[/tex]

Step-by-step explanation:

We need to use the following formula to find the Midpoint "M":

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Given the points (-5,13) and (6,4) can identify that:

[tex]x_1=-5\\x_2=6\\\\y_1=13\\y_2=4[/tex]

The final step is to substitute values into the formula.

Therefore, the midpoint of the segment between the points (-5,13) and (6,4) is:

[tex]M=(\frac{-5+6}{2},\frac{13+4}{2})\\\\M=(\frac{1}{2},\frac{17}{2})\\\\M=(0.5,8.5)[/tex]

Answer:

[tex](\frac{1}{2},\frac{17}{2})[/tex]

Step-by-step explanation:

Midpoint formula is

[tex]( \frac{x + x_1}{2},\frac{y + y_1}{2})[/tex]

The given points are,

(-5,13) and (6,4)

[tex]( \frac{-5 + 6}{2},\frac{13+4}{2})[/tex]

[tex]( \frac{1}{2},\frac{17}{2})[/tex]

Hence the midpoint of the segment between (-5,13) and (6,4) is

[tex]( \frac{1}{2},\frac{17}{2})[/tex]