Find the slope of the line(s) passing through the given points. Then tell whether the line(s) rises, falls, is horizontal, or is vertical.

Answer:
21) falls
22) vertical
23) rises
24) rises
25) falls
26) horizontal
27) rises
28) horizontal
29) falls
Step-by-step explanation:
We shall use the slope formula [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] to calculate the slopes of the line passing through each pair of point.
21: (3,1), (2,6)
The slope is [tex]m=\frac{6-1}{2-3}[/tex]
[tex]\implies m=\frac{5}{-1}=-5[/tex].
A negative slope means this line falls
22) (-2,5), (-2,4)
The slope is [tex]m=\frac{4-5}{-2- -2}=\frac{-1}{0}[/tex]= undefined
An undefined slope means this line is vertical
23) The given point is (0,8) (2,10)
The slope is [tex]m=\frac{10-8}{2-0}=\frac{2}{2}=+1[/tex]
A positive slope means this line rises
24) The points are (-3,-3), (3,1)
The slope is [tex]m=\frac{1--3}{3--3}=\frac{4}{6}=+\frac{2}{3}[/tex]
A positive slope means this line rises
25) The points are: (5,0) (6,-2)
Slope: [tex]m=\frac{-2-0}{6-5}=\frac{-2}{1}=-2[/tex]
A negative slope means this line falls
26) The points are (-2,-8) , (5,-8).
Slope: [tex]m=\frac{-8--8}{5--2}=\frac{0}{7}=0[/tex]
A zero slope means this line is horizontal
27) The points are: (-1,2) , (5,3)
Slope: [tex]m=\frac{3-2}{5--1}=+\frac{1}{6}[/tex]
A positive slope means this line rises
28) The points are: [tex](\frac{1}{2},4)[/tex], (-1,4)
Slope: [tex]m=\frac{4-4}{-1-\frac{1}{2}}=\frac{0}{\frac{1}{2}}=0[/tex]
A zero slope means the line is horizontal
29) The points are: [tex](4,\frac{1}{2}), (5,\frac{1}{4})[/tex]
Slope: [tex]m=\frac{\frac{1}{4}-\frac{1}{2}}{5-4}=-\frac{1}{4}[/tex]
A negative slope means this line falls.