dlynjen
contestada

Find the slope of the line(s) passing through the given points. Then tell whether the line(s) rises, falls, is horizontal, or is vertical.

Find the slope of the lines passing through the given points Then tell whether the lines rises falls is horizontal or is vertical class=

Respuesta :

Answer:

21) falls

22) vertical

23) rises

24) rises

25) falls

26) horizontal

27) rises

28) horizontal

29) falls

Step-by-step explanation:

We shall use the slope formula [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] to calculate the slopes of the line passing through each pair of point.

21: (3,1), (2,6)

The slope is [tex]m=\frac{6-1}{2-3}[/tex]

[tex]\implies m=\frac{5}{-1}=-5[/tex].

A negative slope means this line falls

22) (-2,5), (-2,4)

The slope is [tex]m=\frac{4-5}{-2- -2}=\frac{-1}{0}[/tex]= undefined

An undefined slope means this line is vertical

23) The given point is (0,8) (2,10)

The slope is [tex]m=\frac{10-8}{2-0}=\frac{2}{2}=+1[/tex]

A positive slope means this line rises

24)  The points are (-3,-3), (3,1)

The slope is [tex]m=\frac{1--3}{3--3}=\frac{4}{6}=+\frac{2}{3}[/tex]

A positive slope means this line rises

25) The points are: (5,0) (6,-2)

Slope: [tex]m=\frac{-2-0}{6-5}=\frac{-2}{1}=-2[/tex]

A negative slope means this line falls

26)  The points are (-2,-8) , (5,-8).

Slope: [tex]m=\frac{-8--8}{5--2}=\frac{0}{7}=0[/tex]

A zero slope means this line is horizontal

27) The points are: (-1,2) , (5,3)

Slope: [tex]m=\frac{3-2}{5--1}=+\frac{1}{6}[/tex]

A positive slope means this line rises

28) The points are: [tex](\frac{1}{2},4)[/tex], (-1,4)

Slope: [tex]m=\frac{4-4}{-1-\frac{1}{2}}=\frac{0}{\frac{1}{2}}=0[/tex]

A zero slope means the line is horizontal

29) The points are: [tex](4,\frac{1}{2}), (5,\frac{1}{4})[/tex]

Slope: [tex]m=\frac{\frac{1}{4}-\frac{1}{2}}{5-4}=-\frac{1}{4}[/tex]

A negative slope means this line falls.