Respuesta :

Answer:

a) [tex]M = 20[/tex]

b) [tex]r=6[/tex]

Step-by-step explanation:

a)

Given that

[tex]M[/tex] ∝ [tex]r^3[/tex]

Say

[tex]M=kr^3[/tex]                --------------(A)

Where is k is constant of proportionality

We are also given that

When r = 4 , M = 160

Hence

[tex]160 = k \times 4^3[/tex]

[tex]160=k \times 64[/tex]

[tex]k = \frac{160}{64}[/tex]

[tex]k = \frac{5}{2}[/tex]

Now we are asked to determine

a) M when r = 2

Putting the values of k and r in equation  (A)

[tex]M= \frac{5}{2} \times 2^3[/tex]

[tex]M= \frac{5}{2} \times 8[/tex]

[tex]M= \frac{5 \times 8}{2}[/tex]

[tex]M= 5 \times 4[/tex]

[tex]M = 20[/tex]

b) r , when M = 540

Putting the value of M and k in equation A again

[tex]540 = \frac{5}{2} \times r^3[/tex]

[tex]r^3=540 \times \frac{2}{5}[/tex]

[tex]r^3 = \frac{2 \times 540}{5}[/tex]

[tex]r^3 = 2 \times 108[/tex]

[tex]r^3=216[/tex]

[tex]r=\sqrt[3]{216}[/tex]

[tex]r=6[/tex]