Answer:
[tex]A=73.8\°[/tex]
[tex]B=8.2\°[/tex]
[tex]c=76.3\ units[/tex]
Step-by-step explanation:
step 1
Find the measure of side c
Applying the law of cosines
[tex]c^{2}= a^{2}+b^{2}-2(a)(b)cos(C)[/tex]
substitute the given values
[tex]c^{2}= 74^{2}+11^{2}-2(74)(11)cos(98\°)[/tex]
[tex]c^{2}=5,823.5738[/tex]
[tex]c=76.3\ units[/tex]
step 2
Find the measure of angle A
Applying the law of sine
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
substitute the given values
[tex]\frac{74}{sin(A)}=\frac{76.3}{sin(98\°)}[/tex]
[tex]sin(A)=(74)sin(98\°)/76.3[/tex]
[tex]A=arcsin((74)sin(98\°)/76.3)[/tex]
[tex]A=73.8\°[/tex]
step 3
Find the measure of angle B
we know that
The sum of the internal angles of a triangle must be equal to 180 degrees
so
[tex]A+B+C=180\°[/tex]
substitute the given values
[tex]73.8\°+B+98\°=180\°[/tex]
[tex]171.8\°+B=180\°[/tex]
[tex]B=180\°-171.8\°=8.2\°[/tex]