At 298 K, the equilibrium constant for the following reaction is 1.00×10-7:H2S(aq) + H2O H3O+(aq) + HS-(aq)The equilibrium constant for a second reaction is 1.00×10-19:HS-(aq) + H2O H3O+(aq) + S2-(aq)Use this information to determine the equilibrium constant for the reaction:H2S(aq) + 2H2O 2H3O+(aq) + S2-(aq)K =

Respuesta :

Explanation:

As the first reaction equation is as follows.

             [tex]H_{2}S(aq) \rightleftharpoons H^{+}(aq) + HS^{-}(aq)[/tex] ..... (1)

So, expression for equilibrium constant will be as follows.

        [tex]K'_{c} = \frac{[H^{+}][HS^{-}]}{[H_{2}S]}[/tex] = [tex]1.00 x 10^{-7}[/tex]

The second reaction equation is as follows.

            [tex]HS^{-}(aq) \rightaleftharpoons H^{+}(aq) + S^{2-}(aq)[/tex] ...... (2)

So, expression for equilibrium constant will be as follows.

        [tex]K"_{c} = \frac{[H^{+}][S^{2-}]}{[HS^{-}]} = [tex]1.00 \times 10^{-19}[/tex]

Hence, the net reaction equation will be (1) + (2) as follows.

              [tex]H_{2}S(aq) \rightleftharpoons 2H^{+}(aq) + S^{2-}(aq)[/tex]

           [tex]K_{c}[/tex] = [tex]\frac{[H^{+}]^{2}[S^{2-}]}{[H_{2}S][/tex]

                     = [tex][H^{+}][HS^{-}]{[H_{2}S][/tex] x [tex]\frac{[H^{+}][S^{2-}]}{[HS^{-}]}[/tex]

                           = [tex]K'_{c} \times K"_{c}[/tex]

                           = [tex]1.00 \times 10^{-7} \times 1.00 \times 10^{-19}[/tex]

                          = [tex]1.00 \times 10^{-26}[/tex]

Thus, we can conclude that the equilibrium constant for the reaction: [tex]H_{2}S(aq) \rightleftharpoons 2H^{+}(aq) + S^{2-}(aq)[/tex]  is K = [tex]1.00 \times 10^{-26}[/tex].