Respuesta :

In this triangle, we have

[tex]\cos30^\circ=\dfrac{4x\sqrt3-5\sqrt3}{5x-4}[/tex]

You should know that [tex]\cos30^\circ=\dfrac{\sqrt3}2[/tex], so that

[tex]\dfrac{\sqrt3}2=\dfrac{4x\sqrt3-5\sqrt3}{5x-4}[/tex]

Divide both sides by [tex]\sqrt3[/tex] to get

[tex]\dfrac12=\dfrac{4x-5}{5x-4}[/tex]

Multiply both sides by [tex]5x-4[/tex] to get

[tex]\dfrac{5x-4}2=4x-5[/tex]

Simplify and solve for [tex]x[/tex]:

[tex]\dfrac{5x}2-2=4x-5[/tex]

[tex]5-2=4x-\dfrac{5x}2[/tex]

[tex]3=\dfrac{3x}2[/tex]

[tex]6=3x[/tex]

[tex]\implies\boxed{x=2}[/tex]