Air at 7S°F and14.6 though a cfm(cubic ft per minute) and the The flow rate is 48000 psia flows though a rectangular duct of Ix2 ft cross section. . a hydraulic ughness factor for the duct, is 0.00015 ft. Determine: raulic radius; and equivalent diameter b. velocity of flow c. Reynolds number d. pressure drop per 100 ft of flow I nine line of constant diameter of

Respuesta :

Explanation:

The given data is as follows.

Air is at [tex]75^{o}F[/tex] and 14.6 psia.

[tex]\varepsilon[/tex] = 0.00015 ft,     Flow rate, (Q) = 48000 [tex]ft^{3}/m[/tex]

(a)  Formula to calculate hydraulic radius [tex](r_{H})[/tex] is as follows.

              [tex]r_{H} = \frac{\text{free flow area}}{\text{wet perimeter}}[/tex]

                          = [tex]\frac{2 \times 1}{2(1) + 2(2)}[/tex]

                          = [tex]\frac{1}{3}[/tex] ft

Formula for equivalent diameter is as follows.

                     [tex]D_{eq} = 4 \times r_{H}[/tex]

                                    = [tex]4 \times \frac{1}{3} ft[/tex]  

                                    = [tex]\frac{4}{3}[/tex] ft

(b)    Formula for velocity floe is as follows.

                         Q = VA

                     V = [tex]\frac{Q}{A}[/tex]

                        = [tex]\frac{48000}{2 \times 1}[/tex] ft/min

                        = 24000 ft/min

(c)   Formula to calculate Reynold's number is as follows.

         [tex]R_{e}[/tex] = [tex]\frac{D \times V \times \rho}{\mu}[/tex]

                   = [tex]\frac{\frac{4}{3} \times 24000 \times 0.0744}{0.0443}[/tex]  (as [tex]\rho = 0.0744 lb/ft^{3}[/tex] and [tex]\mu[/tex] = 0.0443 lb/ft. hr)

                   = 53742.66 hr/min  

As 1 hr = 10 min. So, [tex]53742.66 hr/min \times \frac{60 min}{1 hr}[/tex]

                            = 3224559.6

(d)   Formula to calculate pressure drop [tex](\Delta P)[/tex] is as follows.

              [tex]\frac{\Delta P}{L} = \frac{4f \rho V^{2}}{2Dg_{c}}[/tex]

Putting the given values into the above formula as follows.

               [tex]\frac{\Delta P}{L} = \frac{4f \rho V^{2}}{2Dg_{c}}[/tex]

                      = [tex]\frac{4 \times 0.00015 \times 100 \times 0.0744 \times (24000)^{2}}{2 \times \frac{4}{3} \times {4}{3}}[/tex]

                      = 6.238 [tex]lb/ft^{2}[/tex]