contestada

The water from a fire hose follows a path described by y equals 3.0 plus 0.8 x minus 0.40 x squared ​(units are in​ meters). If v Subscript x is constant at 5.0 ​m/s, find the resultant velocity at the point left parenthesis 2.0 comma 3.0 right parenthesis .

Respuesta :

Explanation:

It is given that, the water from a fire hose follows a path described by equation :

[tex]y=3+0.8x-0.4x^2[/tex]........(1)

The x component of constant velocity, [tex]v_x=5\ m/s[/tex]

We need to find the resultant velocity at the point (2,3).

Let [tex]\dfrac{dx}{dt}=v_x[/tex] and [tex]\dfrac{dy}{dt}=v_y[/tex]

Differentiating equation (1) wrt t as,

[tex]\dfrac{dy}{dt}=0.8\times \dfrac{dx}{dt}-0.8x\times \dfrac{dx}{dt}[/tex]

[tex]v_y=0.8\times v_x-0.8x\times v_x[/tex]

[tex]v_y=0.8v_x(1-x)[/tex]

When x = 2 and [tex]v_x=5\ m/s[/tex]

So,

[tex]v_y=0.8\times 5\times (1-2)[/tex]

[tex]v_y=-4\ m/s[/tex]

Resultant velocity, [tex]v=\sqrt{v_x^2+v_y^2}[/tex]

[tex]v=\sqrt{5^2+(-4)^2}[/tex]

v = 6.4 m/s

So, the resultant velocity at point (2,3) is 6.4 m/s. Hence, this is the required solution.