A satellite is in a circular orbit around the Earth at an altitude of 2.80 3 106 m. Find (a) the period of the orbit, (b) the speed of the satellite, and (c) the acceleration of the satellite. Hint: Modify Equation 7.23 so it is suitable for objects orbiting the Earth rather than the Sun.

Respuesta :

Explanation:

Given that,

Altitude [tex]h= 2.803\times10^{6}\ m[/tex]

We need to calculate the radius

[tex]r=R+h[/tex]

Where, R = radius of the earth

h = radius of altitude

Put the value into the formula

[tex]r=(6.38\times10^{6}+2.803\times10^{6})[/tex]

[tex]r=9.18\times10^{6}\ m[/tex]

(a). We need to calculate the period of the orbit,

Using formula of period

[tex]T^2=\dfrac{4\pi^2}{GM}r^3[/tex]

[tex]T^2=\dfrac{4\pi^2}{6.67\times10^{-11}\times5.98\times10^{24}}\times(9.18\times10^{6})^3[/tex]

[tex]T^2=76570372.9509\ sec[/tex]

[tex]T=8750.45\ sec[/tex]

(b). We need to calculate the speed of the satellite

Using formula of speed

[tex]v^2=\dfrac{GM}{r}[/tex]

Put the value into the formula

[tex]v^2=\dfrac{6.67\times10^{-11}\times5.98\times10^{24}}{9.18\times10^{6}}[/tex]

[tex]v^2=43449455.3377\ m/s[/tex]

[tex]v=6.59\times10^{3}\ m/s[/tex]

(c). We need to calculate the acceleration of the satellite

Using formula of acceleration

[tex]a_{c}=\dfrac{v^2}{r}[/tex]

Put the value into the formula

[tex]a_{c}=\dfrac{(6.59\times10^{3})^2}{9.18\times10^{6}}[/tex]

[tex]a_{c}=4.73\ m/s^2[/tex]

Hence, This is the required solution.