Respuesta :

Answer:

The sum of the slopes of the three sides of the triangle is 3/2.

Step-by-step explanation:

Given information: The vertices of triangle are R(0,0), S(7,0), and T(2,5).

We need to find the sum of the slopes of the three sides of the triangle.

Slope formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Using slope formula, the slope of segment RS is

[tex]m_{RS}=\frac{0-0}{7-0}=0[/tex]

[tex]m_{RT}=\frac{5-0}{2-0}=\frac{5}{2}[/tex]

[tex]m_{ST}=\frac{5-0}{2-7}=\frac{5}{-5}=-1[/tex]

The sum of the slopes of the three sides of the triangle is

[tex]Sum=m_{RS}+m_{RT}+m_{ST}[/tex]

[tex]Sum=0+\frac{5}{2}+(-1)[/tex]

[tex]Sum=\frac{5-2}{2}[/tex]

[tex]Sum=\frac{3}{2}[/tex]

Therefore the sum of the slopes of the three sides of the triangle is 3/2.