Assume the hydrolysis of ATP proceeds with ΔG′° = –30 kJ/mol. ATP + H2O → ADP + Pi Which expression gives the ratio of ADP to ATP at equilibrium, if the [Pi] = 1.0 M? (Note: Use RT = 2.5 kJ/mol.)

Respuesta :

Answer:

[tex]6.14\cdot 10^{-6}[/tex]

Explanation:

Firstly, write the expression for the equilibrium constant of this reaction:

[tex]K_{eq} = \frac{[ADP][Pi]}{ATP}[/tex]

Secondly, we may relate the change in Gibbs free energy to the equilibrium constant using the equation below:

[tex]\Delta G^o = -RT ln K_{eq}[/tex]

From here, rearrange the equation to solve for K:

[tex]K_{eq} = e^{-\frac{\Delta G^o}{RT}}[/tex]

Now we know from the initial equation that:

[tex]K_{eq} = \frac{[ADP][Pi]}{ATP}[/tex]

Let's express the ratio of ADP to ATP:

[tex]\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}}[/tex]

Substitute the expression for K:

[tex]\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}}[/tex]

Now we may use the values given to solve:

[tex]\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}} = [Pi]e^{\frac{\Delta G^o}{RT}} = 1.0 M\cdot e^{\frac{-30 kJ/mol}{2.5 kJ/mol}} = 6.14\cdot 10^{-6}[/tex]