Respuesta :
Answer:
(f•g)(4) = 45
Step-by-step explanation:
f(x)=4x+1
g(x)=x^2-5
(f•g)(x) = 4(x^2 -5)+1
(f•g)(4) = 4(4^2 -5)+1
(f•g)(4) = 4(16-5)+1
(f•g)(4) = 4(11)+1
(f•g)(4) = 44 + 1
(f•g)(4) = 45
Answer:
45
Step-by-step explanation:
Assuming f∘g, it is the function composition of two given function. So, f(g(x))=(f∘g)(x).
Function Composition is when we nest two functions creating another one, so if we nest f(x) and g(x) we'll have another one f(g(x)).
If f(x)=4x+1 and g(x)=x^2-5, (fg)(x)
If we replace x in the second function, namely, g(x) then we have:
f(g(x))
[tex]4(x^2-5)+1=0\\\\4x^2-20+1=0\\\\4x^2-19=0[/tex]
Now, let's plug it in the value of 4 for x
[tex]f(g(4))=4(4)^2-19\\[/tex]
[tex](f(g(4))=45[/tex]