Calculate the electric double layer thickness of a alumina colloid in a dilute (0.1 mol/dm3) CsCI electrolyte solution at 30 °C. How are these numbers affected by the addition of 0.1 mol/dm3 of KCL? At what distance from the particle surface (r) has the potential decayed to 1% of its initial value?

Respuesta :

Explanation:

The given data is as follows.

    Concentration = 0.1 [tex]mol/dm^{3}[/tex]

                             = 0.1 \frac{mol dm^{3}}{dm^{3}} \frac{10^{3}}{dm^{3}} \times \frac{6.022 \times 10^{23}}{1 mol} ions

                             = [tex]6.022 \times 10^{25} ions/m^{3}[/tex]

               T = [tex]30^{o}C[/tex] = (30 + 273) K = 303 K

Formula for electric double layer thickness ([tex]\lambda_{D}[/tex]) is as follows.

            [tex]\lambda_{D}[/tex] = [tex]\frac{1}{k} = \sqrt \frac{\varepsilon \varepsilon_{o} K_{g}T}{2 n^{o} z^{2} \varepsilon^{2}}[/tex]

where, [tex]n^{o}[/tex] = concentration = [tex]6.022 \times 10^{25} ions/m^{3}[/tex]

Hence, putting the given values into the above equation as follows.

                 [tex]\lambda_{D}[/tex] = [tex]\sqrt \frac{\varepsilon \varepsilon_{o} K_{g}T}{2 n^{o} z^{2} \varepsilon^{2}}[/tex]                    

                          = [tex]\sqrt \frac{78 \times 8.854 \times 10^{-12} c^{2}/Jm \times 1.38 \times 10^{-23}J/K \times 303 K}{2 \times 6.022 \times 10^{25} ions/m^{3} \times (1)^{2} \times (1.6 \times 10^{-19}C)^{2}}[/tex]  

                         = [tex]9.669 \times 10^{-10}[/tex] m

or,                     = [tex]9.7 A^{o}[/tex]

                          = 1 nm (approx)

Also, it is known that [tex]\lambda_{D}[/tex] = [tex]\sqrt \frac{1}{n^{o}}[/tex]

Hence, we can conclude that addition of 0.1 [tex]mol/dm^{3}[/tex] of KCl in 0.1 [tex]mol/dm^{3}[/tex] of NaBr "[tex]\lambda_{D}[/tex]" will decrease but not significantly.