Answer:
Part 1) [tex]s=\frac{A}{(3H+w)}[/tex]
Part 2) [tex]s=2.77\ in[/tex]
Step-by-step explanation:
Part 1) Solve the formula to s
we have
[tex]A=3sH+sw[/tex]
Solve for s
That means -----> isolate the variable s
Factor the variable s in the right side
[tex]A=s(3H+w)[/tex]
Divide by (3H+w) both sides
[tex]A/(3H+w)=s(3H+w)/(3H+w)[/tex]
Rewrite
[tex]s=\frac{A}{(3H+w)}[/tex]
Part 2) If the surface area measures 75.4 inches square how much is the side length of the base?
[tex]s=\frac{A}{(3H+w)}[/tex]
we have
[tex]A=75.4\ in^2[/tex]
[tex]H=8\ in[/tex]
[tex]w=3.25\ in[/tex]
substitute
[tex]s=\frac{75.4}{(3(8)+3.25)}[/tex]
[tex]s=2.77\ in[/tex]