Given the function f(x) = −2x^2 + 3x + 10, find f(1) and f(3). Choose the statement that is true concerning these two values.

The value of f(1) is the same as the value of f(3).
The value of f(1) cannot be compared to the value of f(3).
The value of f(1) is larger than the value of f(3).
The value of f(1) is smaller than the value of f(3).

Respuesta :

Answer:

The value of f(1) is greater than value of f(3)

Step-by-step explanation:

We substitute..x = 1..into the given equation....where we say...

; -2(1)^2 + 3(1) + 10 = 11

Then we substitute..x = 3..into the given equation

;-2(3)^2 + 3(3) + 10

;-2(9) + 9 + 10 = 1

If f(1) = 11 and f(3) = 1...then the value of f(1) is greater than the value of f(3)

Answer:

C. The value of f(1) is larger than the value of f(3).

Step-by-step explanation:

We have been given a function [tex]f(x)=-2x^2+3x+10[/tex]. We are asked to find [tex]f(1)[/tex] and [tex]f(3)[/tex].

To find [tex]f(1)[/tex], we will substitute [tex]x=1[/tex] in our given function.

[tex]f(x)=-2x^2+3x+10[/tex]

[tex]f(1)=-2(1)^2+3(1)+10[/tex]

[tex]f(1)=-2*1+3+10[/tex]

[tex]f(1)=-2+13[/tex]

[tex]f(1)=11[/tex]

To find [tex]f(3)[/tex], we will substitute [tex]x=3[/tex] in our given function.

[tex]f(x)=-2x^2+3x+10[/tex]

[tex]f(3)=-2(3)^2+3(3)+10[/tex]

[tex]f(3)=-2*9+9+10[/tex]

[tex]f(3)=-18+19[/tex]

[tex]f(3)=1[/tex]

We can see that [tex]f(1)=11[/tex] and [tex]f(3)=1[/tex]. Therefore, option C is the correct choice.