Answer:
see the explanation
Step-by-step explanation:
we know that
[tex]sin(A-B)= sinAcosB-cosAsinB[/tex]
we have
[tex]A=180\°\\ B=\theta[/tex]
so
[tex]sin(180\°-\theta)= sin(180\°)cos(\theta)-cos(180\°)sin(\theta)[/tex]
Remember that
[tex]sin(180\°)=0[/tex]
[tex]cos(180\°)=-1[/tex]
substitute
[tex]sin(180\°-\theta)= (0)cos(\theta)-(-1)sin(\theta)[/tex]
[tex]sin(180\°-\theta)=sin(\theta)[/tex] ----> is verified