Answer:
The probability density function is [tex]0.25\times 10^{8} m^{- 1}[/tex]
Solution:
Position of the particle in the box, S = [tex]10^{- 10} m[/tex]
Length of the box, L = [tex]20\times 10^{- 10} m[/tex]
Now, the probablity is given by:
P = [tex]\frac{10^{- 10}}{20\times 10^{- 10}} = \frac{1}{20}[/tex]
Now,
The probability density, [tex]\psi = \frac{P}{L}[/tex]
[tex]\psi = \frac{\frac{1}{20}}{20\times 10^{- 10}} = 0.25\times 10^{8} m^{- 1}[/tex]