Q.2
The x coordinate of a point p is twice its y-coordinate. If p is equidistant
from Q (2,-5) and R (-3, 6) find the coordinates of p.
Q.3
Find the ratio in which y axis divides the line segment joining the points
A (5.-6) and B (-1,-4). Also find the coordinates of the point of division.
Q.4
Find the ratio in which the point(-3, k) divides the line segment joining
the points (-5,-4) and (-2,3). Also find the value of k.
Find the ratio in which pſ4, m) divides the line segment joining the
Q.5
pointsA (2,3) and B(6,-3)Hence find m.

Respuesta :

Answer:

Q2. (16,8)

Q3. [tex]k=\frac{2}{3}[/tex], ratio=5:1

Q4. Ratio=2:1

Q5. Ratio=1:1

Step-by-step explanation:

Q2. Let (2a,a) be the coordinates of P.

Since P is equidistant  from Q (2,-5) and R (-3, 6), we have

[tex]|PQ|=|PR|[/tex]

This gives us:

[tex]\sqrt{(2a-2)^2+(a+5)^2}=\sqrt{(2a+3)^2+(6-a)^2}[/tex]

[tex]\implies (2a-2)^2+(a+5)^2=(2a+3)^2+(6-a)^2[/tex]

Expand:

[tex]4a^2-8a+4+a^2+10a+25=4a^2+12a+9+a^2 -12a+36[/tex]

[tex]2a=16[/tex]

[tex]a=8[/tex]

The coordinates of P are [tex](16,8)[/tex]

Q.3  The equation of the line segment joining the points

A (5.-6) and B (-1,-4) is [tex]x+3y=-13[/tex].

The x-coordinate of the point that divides AB in the ratio m:n is

[tex]x=\frac{mx_2+nx_1}{m+n}[/tex]

The y-axis meets this line at [tex](0,-\frac{13}{3})[/tex]

We substitute [tex]x_2=-1,x_1=5,x=0[/tex] into this equation and solve for m and n.

[tex]0=\frac{-m+5n}{m+n}[/tex]

[tex]m=5n[/tex]

[tex]\frac{m}{n}=\frac{5}{1}[/tex]

Therefore the ratio is m:n=5:1

Q.4 The equation of the line segment joining

the points (-5,-4) and (-2,3) is [tex]-7x+3y=23[/tex].

The point (-3, k) must satisfy this line because it lies on it.

[tex]-7(-3)+3k=23[/tex].

[tex]\implies k=\frac{2}{3}[/tex]

We again use the equation [tex]x=\frac{mx_2+nx_1}{m+n}[/tex] to find the given ratio.

Substitute: [tex]x_2=-2,x_1=-5[/tex]

[tex]4=\frac{-2m+-5n}{m+n}[/tex]

[tex]\implies m=2n[/tex]

[tex]\frac{m}{n}= \frac{2}{1}[/tex]

The ratio is m:n=2:1

Q. 5 The equation of the line joining A (2,3) and B(6,-3) is [tex]3x+2y=12[/tex].

We substitute (4,m) to get:

12+4m=12

4m=0

m=0

It is obvious that: (4,0) is the midpoint of A(2,3) and B(6,-3).

Hence the ratio is 1:1