Answer:
The net magnetic flux through the rest of Earth's surface is [tex]5.782\times10^{-2}\ T[/tex]
Explanation:
Given that,
Magnetic field = 42 μT
Area [tex]A=3.71\times10^{5}\ km^2[/tex]
[tex]A=3.71\times10^{11}\ m^2[/tex]
We need to calculate the flux per unit area
[tex]flux\ per\ unit\ area=\dfrac{42\times10^{-6}}{3.71\times10^{11}}[/tex]
[tex]flux\ per\ unit\ area=1.132\times10^{-16}\ T/m^2[/tex]
We need to calculate the total earth's surface area
[tex]A'=4\pi r^2[/tex]
[tex]A'=4\times\pi\times(6.3781\times10^{6})^2[/tex]
[tex]A'=5.1120\times10^{14}\ m^2[/tex]
We need to calculate the rest of earth's area
[tex]A''=A-A'[/tex]
Put the value into the formula
[tex]A''=5.1120\times10^{14}-3.71\times10^{11}[/tex]
[tex]A''=5.10829\times10^{14}\ m^2[/tex]
We need to calculate the net magnetic flux through the rest of Earth's surface
[tex]B'=5.10829\times10^{14}\times1.132\times10^{-16}[/tex]
[tex]B'=5.782\times10^{-2}\ T[/tex]
Hence, The net magnetic flux through the rest of Earth's surface is [tex]5.782\times10^{-2}\ T[/tex]