Assume the average value of the vertical component of Earth's magnetic field is 42 μT (downward) in some region that has an area of 3.71 × 105km2. What then is the magnitude of the net magnetic flux through the rest of Earth's surface (the entire surface excluding that region).

Respuesta :

Answer:

The net magnetic flux through the rest of Earth's surface is  [tex]5.782\times10^{-2}\ T[/tex]

Explanation:

Given that,

Magnetic field = 42 μT

Area [tex]A=3.71\times10^{5}\ km^2[/tex]

[tex]A=3.71\times10^{11}\ m^2[/tex]

We need to calculate the flux per unit area

[tex]flux\ per\ unit\ area=\dfrac{42\times10^{-6}}{3.71\times10^{11}}[/tex]

[tex]flux\ per\ unit\ area=1.132\times10^{-16}\ T/m^2[/tex]

We need to calculate the total earth's surface area

[tex]A'=4\pi r^2[/tex]

[tex]A'=4\times\pi\times(6.3781\times10^{6})^2[/tex]

[tex]A'=5.1120\times10^{14}\ m^2[/tex]

We need to calculate the rest of earth's area

[tex]A''=A-A'[/tex]

Put the value into the formula

[tex]A''=5.1120\times10^{14}-3.71\times10^{11}[/tex]

[tex]A''=5.10829\times10^{14}\ m^2[/tex]

We need to calculate the net magnetic flux through the rest of Earth's surface

[tex]B'=5.10829\times10^{14}\times1.132\times10^{-16}[/tex]

[tex]B'=5.782\times10^{-2}\ T[/tex]

Hence, The net magnetic flux through the rest of Earth's surface is  [tex]5.782\times10^{-2}\ T[/tex]