Use the Remainder Theorem to find the remainder when P(x) = x^4-9x^3 - 5x^2 - 3x + 4 is

divided by x + 3

Show your work

Respuesta :

Answer:

Remainder=292

Step-by-step explanation:

x+3=0

x=-3

p(-3)=(-3)^4-9(-3)^3-5(-3)^2-3(-3)+4

=81+243-45+9+4

=337-45

=292

The required remainder is [tex]292[/tex].

Given:

The given polynomial is [tex]P(x)=x^4-9x^3-5x^2-3x+4[/tex].

[tex]P(x)[/tex] is divided by [tex]x+3[/tex].

To find:

The remainder by using the Remainder Theorem.

Explanation:

According to the Remainder Theorem, if a polynomial [tex]P(x)[/tex] is divided by [tex](x-c)[/tex], then the remainder is [tex]P(c)[/tex].

It is given that [tex]P(x)[/tex] is divided by [tex]x+3[/tex]. By using the Remainder Theorem, the remainder is [tex]P(-3)[/tex].

[tex]P(-3)=(-3)^4-9(-3)^3-5(-3)^2-3(-3)+4[/tex]

[tex]P(-3)=81-9(-27)-5(9)+9+4[/tex]

[tex]P(-3)=81+243-45+13[/tex]

[tex]P(-3)=292[/tex]

Therefore, the required remainder is [tex]292[/tex].

Learn more:

https://brainly.com/question/16825941

Otras preguntas