Answer:
$ 1813
Step-by-step explanation:
Given,
Investment of Kevin, [tex]P_1[/tex] = $ 49000,
Rate of interest = 1.9 % annually,
Thus, his interest, [tex]I_1[/tex] = 1.9% of 49000
[tex]=\frac{1.9\times 49000}{100}[/tex]
[tex]=\frac{93100}{100}[/tex]
[tex]=\$ 931[/tex]
Hence, Kelvin's amount after 1 year,
[tex]A_1=P_1+I_1=49000+931=\$ 49931[/tex]
Now, Investment of Charles, [tex]P_2[/tex] = $ 49000,
Rate of interest = 5.6 % annually,
Thus, his interest, [tex]I_2[/tex] = 5.6% of 49000
[tex]=\frac{5.6\times 49000 }{100}[/tex]
[tex]=\frac{274400}{100}[/tex]
[tex]=\$ 2744[/tex]
Hence, Kelvin's amount after 1 year,
[tex]A_2=P_2+I_1=49000+2744=\$ 51744[/tex]
[tex]\because A_2-A_1=51744-49931 = \$ 1813[/tex]
Therefore, after 1 year Kevin has $1813 more than Charles.