what is the length of BC in the right triangle below?

Answer:
E:75
Step-by-step explanation:
[tex]\sqrt{21^{2} +72^{2}}[/tex]
Answer : The length of BC in the right triangle is, 75
Step-by-step explanation :
Using Pythagoras theorem in ΔBAC :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](BC)^2=(AB)^2+(AC)^2[/tex]
Given:
Side AB = 21
Side AC = 72
Now put all the values in the above expression, we get the value of side BC.
[tex](BC)^2=(21)^2+(72)^2[/tex]
[tex]BC=\sqrt{(21)^2+(72)^2}[/tex]
[tex]BC=\sqrt{441+5184}[/tex]
[tex]BC=\sqrt{5625}[/tex]
[tex]BC=75[/tex]
Therefore, the length of BC in the right triangle is, 75