Answer:
Standard Deviation = 9.75
Step-by-step explanation:
We are given the following data:
n = 25
Ages: 60, 61, 62, 63, 64, 65, 66, 68, 68, 69, 70, 73, 73, 74, 75, 76, 76, 81, 81, 82, 86, 87, 89, 90, 92
Formula:
For sample,
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
Mean = [tex]\frac{1851}{25} = 74.04[/tex]
Sum of square of differences = 2278.96
S.D = [tex]\sqrt{\diplaystyle\frac{2278.96}{24} } = 9.74[/tex]